
AD-Als 198 A MO x E M F AMP OF AN AIPLICAIION Q1TE FSAIN T i/i
LAM A L- -T

IOAALI1

At~~'ki1I~~ li ~ 2.2

W25 I~ ,A&L

MICROCOPY RESOUJTICPEST S*ART,

ARI-SYS-TH-93 AR-004-554

ED ILE cr

DEPARTMENT OF DEFENCE

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

AERONAUTICAL RESEARCH LABORATORIES

00 MELBOURNE, VICTORIA
_DTIC

U" 1 ELECTE l

Systems Technical Memorandum 93

'm-

A WORKIED EXAMPIE OF AN APPIUCATION OF TE

Q SAINT S1MUI71 CN PROGRAM (U)

by

E. SESTITO

tApprove foX pu bldc
L-- -' -:,=* J

Approved for public release.

This work is copyright. Apart from any fair dealing for

the purpose of study, research, criticism or review, as
permitted under the Copyright Act, no pArt may be reproduced

by any process without written permission. Copyright is the
responsibility of the Director Publishing and Marketing, AGPS.
Inquiries should be directed to the Manager, AGPS Press,
Australian Government Publishing Service, GPO Box 84,

Canberra, ACT 2601.

SEPTEMBER 1987

87

AR-004-554

DEPARTMENT OF DEFENCE
DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

AERONAUTICAL RESEARCH LABORATORIES

Systems Technical Memorandum 93

A WORKED EXAMPL OF AN APPICATION OF THE

SAINT SIMULATION PROGRAM (U)

by

S. SESTITO

SUMMARY

SAINT is a network modelling and simulation technique developed to
assist in the design and analysis of complex human-machine systems. This
document discusses some of the SAINT concepts, the development of a SAINT
network, and the method of inputting the network into the SAINT
environment, and presents a brief look at the output from SAINT.

(C) COMMONWEALTH OF AIRAIA 1L967

POSTAL ADDRESS: Director, Aeronautical Research Laboratories,
P.O. Box 4331, Melbourne, Victoria, 3001, Australia.

CONENTS PAGE NO"

1. Introduction 1

2. Network
2.1 Definition of a network 4
2.2 Development of an example network 4

3. The main features of SAINT
3.1 Brief overview of SAINT features 5
3.2 Preliminary notes about SAINT's

simulation program 5
3.3 Basic structure of networks 8
3.4 Flow of network 8
3.5 Time 9
3.6 Information attributes 9
3.7 Resources 10
3.8 System attributes 10
3.9 Access to attributes 11
3.10 user-functions 11
3.11 Moderator functions 12
3.12 Task statistics 14
3.13 user-generated statistics based on

observations 14

4. Method of inputting the network into SAINT
4.1 An overview of the input process 15
4.2 General information data 15
4.3 Inputting the task characteristics 16
4.4 The complete input needed for the

example network 17

5. Running the SAINT system on the VAX computer

at ARL 18

6. Output 20

7. Available manuals 22

Author's note and acknowledgements 23

References 24

Appendix 1. Acce.MI-,, For 25

Appendix 2. IS CfA&l 27

Appendix 3. 3 28

J:.: r........

By

Di'.~t A ;

A L,L,,-,jP..... r

Page 1

1. INTRODUCTION

Many scientific and technical applications, including Human
Factors applications, require the ability to represent a system in an
abstract manner. In this way the influence of any modifications to
the system can be simulated and the results analyzed. A simulation
provides a powerful tool in enabling a system to be analyzed and
improved. A system can usually be represented by a network, where a
network is defined as an abstract representation of a system. In the
case of a human-machine system, the network could include the various
tasks to be performed, the time taken to perform these tasks, and the
possible successive tasks. SAINT is a network modelling and
simulation technique developed to assist in the design and analysis of
complex human-machine systems. It was developed primarily by the
Aerospace Medical Research Laboratory of the USAF for Human Factors
applications in order to examine operator performance effects on
system capability. SAINT is an acronym for Systems Analysis of
Integrated Networks of Tasks. A network represented in SAINT concepts
can be manipulated to test the effects of changing parameters, the
task data or the branching logic. Therefore, given a network which
depicts a particular system, the SAINT simulation program can be used
to simulate this network and will give information about the behaviour
of the system under various conditions which the user can specify.

There are basically two methods of representing the path(s)
through a network. The first method is a simple path network which
has only one possible path through it. Here, all the tasks are
performed in a sequential manner which the designer or compiler orders
in a pre-defined way. The second method is a multiple path network
where the possible paths through the network are determined by the
branching logic of each task. This branching logic can be
probability-based, conditionally-based or sequentially-based.
Therefore, in this type of network there are several paths through the
network and these paths actually represent possible ways through the
system. The SAINT technique provides the various types of branching
logic in order to simulate real or proposed systems. In the following
discussion, emphasis is on multiple path networks because the system
dealt with are too complex to be dealt with adequately, if at all, by
single path networks.

The data for a simulation network can be derived from
observations of real systems, experiment and laboratory part-task
simulation, or even theory-based predictions. The nodes of the
networks are actually meant to represent the performance of each task
in terms of the time required for the successful completion of that
particular task. Thus, in a network designed to approximate a
proposed system, the data for the tasks can be generated by
observations of real systems, laboratory part-task simulation
involving human operators, or theory-bastd predictions. The network
branching logic is also a function of observations from the real
system or hypothesized network relationships. For example, the data
could include the number of times that a recording function was
performed by an operator. By comparing this value with the nmber of

Page 2

times that the recording function was not performed, the designer of
the network will be provided with the probability values of whether
the recording function will be performed or not. Therefore, with a
knowledge of the real working system and data representing the times
required for the task completion and the interaction between the
tasks, a network can be constructed.

The network in Figure 1 will be used as an example network to
illustrate both the development of a network and the SAINT concepts
needed to implement it as a simulation. The tasks in this network are
fully explained in the following sections.

The SAINT technique provides a simulation ccmputer program (which
has been called SAINT.FOR) which follows the characteristics of the
network. This program, written in Fortran, accepts networks specified
in SAINT concepts; these concepts include task descriptions, branching
logic and task duration. By understanding the SAINT concepts, one can
therefore model a network according to these concepts and thus input
this network into the simulation program.

Some of the basic SAINT concepts are discussed in the following
text. The method of inputting this network into a SAINT format is
also important and this is discussed below as well.

This document is intended to provide a novice with enough
information to construct a network, input the network into the SAINT
simulation program and obtain meaningful results pertaining to the
system. The example system in Figure 1 is used to demonstrate the
development of a network, the SAINT concepts used to implement the
network and the method of inputting this network into the simulation
program. The output from this example system is discussed also.

This document outlines some of the lessons learnt from attempting
to use the SAINT computer package which was provided through The
Technical Cooperation Program (TTCP) Subgroup U from the USA to the
Human Factors Group at ARL.

"IT

U)U

C)U
cy 1:

I-

C; c;

2 cu

9 1 t, U
bf d d 0
wl $.-

Page 4

2. NETWOKS

2.1 Definition of a network

A network in the present context is an abstract representation of
a model of a real working system. It includes a description of the
various tasks and the various links between the tasks.

2.2 Development of an example network

A network can be developed from a knowledge of a real system and
data which provide the necessary numerical values of the system.

As a suitable example for the demonstration of the development of
a network, consider a system which simulates a shipboard console
operator processing incoming messages. The development, inputting and
testing of the network representing this system is discussed in the
following text. The developed network is shown in Figure 1. Some of
the main features of this network are

1. there are three types of incoming messages,

2. the rate of message generation is varied between two limits
and is controlled by the SAINT controlling program, and

3. the whole scenario is run for a fixed period of time itim
limit).

These features were included on the basis of actual shipboard
observations. Limits on rate of message generation and the run time
limit have been set by human limitations and practical considerations,
including those of economical use of computer time. The two
activities the operator can perform upon the messages are

1. RECORD recording information, and

2. REP-(OC reporting to the officer of the watch (OOW).

These two activities represent the only tasks in the system which
can be applied to the incoming messages by the operator.

In order to collect data from the system simulation a CHECK task
is inserted into the network. The CHECK task does not influence the
fumction of the operator but it collects data on the network
operations. The CHECK task has the following function. The arrival
time of a message is determined by the SAINT program which uses a
distribution set entered by the user. inus the time at which each
message is generated will be different for each message. From these
specifications two cases can occur

Page 5

1. if the next message generation begins after the previous
message has been completely dealt with, the operator must
'wait' for the next message, or

2. if the next message generation begins before the previous
message has been completely dealt with, this message must be
placed on to a queue and processed as soon as the operator is
free.

Thus the CHECK task will either wait or not for the next message
and this activity will be controlled and monitored by the CHECK task
itself. The task duration of CHECK will therefore not be constant.
CHE is implemented with the use of a moderator function (which will
be explained below).

The experimental data used to construct the network shown in
Figure 1 included approximately 200 messages. These messages were
analyzed in the following manner. The time taken to perform the
various activities, i.e. recording information and reporting to the
O, was recorded for each message. For example, if a message did
involve recording information then the variable corresponding to
rerording information (RECT) was filled with the associated recording
time; on the other hand if no recording was performed then this
variable remained set to zero. Each message analyzed in this way thus
represents a path through the system. As an example, if a message
contained non-zero values for RECT and reporting to the officer of the
watch (REP-OOW) then this indicates that both the recording and
reporting to the OOW activities were performed; so one path through
the system involves doing both the recording and reporting to the OCR
activities consecutively. Thus the different paths through the
network represent the different types of incoming messages.

Through a knowledge of the system the designer of the network can
order the activities; for example, whether the recording information
activity was performed before or after the activity of reporting to
the owC.

The possible paths through the system are fixed by the branching
routine determined after a task has ben completed. The branching
types are determined by the experimental data. If the designer of the
network is at a certain point in the network (e.g. just after the
copletion of the RECORD task) then by considering the next possible
activity the probability value for that activity to be performed can
be determined. For example, by counting the numer of messages which
have non-zero values for REP-aOW (which satisfy the pre-requisites of
RECr >0) then the probability of performing this activity can be
obtained; this probability would be equal to the number of messages
which have non-zero quantities for REP-OOK divided by the total number
of messages being considered at this point.

Since most of the nodes (junctions) throghout the network were
determined in this manmer the corresponding tasks have branches based
on probability values. Som of the tasks are only buffer tasks (that
is, take no time to perform) which aid in the design of the network in

Page 6

utilizing these determined probability values; an example of this is
the BEGIN task. Sam of the tasks in the network are also duplicated
(i.e. perform the same function) in order to clarify and utilize
these determined probability values; an example of this is the REP-OOf
task. Most of the other branches are deterministic; that is, all the
tasks emanating from this task will be performed. The CHECK task has
the only conditional branching. Here, the current elapsed time is
compared to the time limit specified by the user. If the elapsed time
is greater than the time limit, then the simulation performs the
FINISH task and then stops; if this is not the case then the system
starts again at the BEGIN task and a new message is generated. This
CHECK task, as mentioned before, also controls the waiting or
non-waiting period of the operator in connection with the arrival of
the next message.

The network shown in Figure 1 will be used to illustrate some of
the SAINT concepts. The method of inputting this network into the
SAINT simulation program will be then demonstrated. In particular,
the implementation of the key CHECK task will be discussed.

Page 7

3. MAIN FEATURES OF SAINT

3.1 Brief overview of SAINT featues

The following sections contain a brief explanation of some of the
SAINT concepts. Many of the concepts are illustrated with the use of
the example network found in Figure 1. The purpose of this section is
to provide enough knowledge for a newcomer to construct and develop a
simple SAINT network. This section complements the detailed
description of all of the SAINT concepts given in the SAINT manual
called 'Simulation using SAINT: a user-orientated instruction manual'
(Ref. 1).

3.2 Preliminary notes about SAINT's simulation program

The SAINT computer simulation program (which has been called
SAINT.FOR), is written in the FORTRAN 4 or FORTRAN 66 programming
language. There were four modifications made to SAINT.FOR as received
from the US to make it compatible with the Fortran available on the
ARL VAX-11/780 computer. Firstly, line 11880 was missing (the line
numbers are found at the end of each line); the missing code was
obvious and easy to replace. Secondly, the function DRAND is a
machine dependant function. DRAD generates a random number and it
was modified to be compatible with the VAX computer. Thirdly, since
the files 18 (nrnit) and 19 (nrent) are only used in the program, it
was decided to make them internal only; that is they were deleted at
the end of the program run. Finally, the format statement of line
8400 was modified to allow the output printing of a larger variable;
in Fortran, output is printed according to the specifications found in
a format statement and with the example network it was found that the
specifications of a particular variable allowed insufficient space for
its proper output printing. A listing of the modifications made to
the program can be found in Appendix 1.

The exchange of variables and values between the various parts of
the simulation program are carried out in COMM blocks, which are
found at the top of various sub-programs (just under each header). To
access a variable, the common block which contains this variable must
be included in the sub-program. Only those common blocks which
contain the variables referenced in the sub-program need to be
included. For example, referring to Figure 2, because the variable
TNOW is used in this function only common block com06 is included
here.

And m nmm ~mmm

Page 8

FUNCTION USERF(JJ) 00050920
CCMON /COK06/ TNK, TfIEX,MFAD, SEED, ISEED,NCRDR,NPRNT,NPUNCH,

* NRNIT,NRE,MNDC,NDC,NDTN,NNTC

C CODE FOR USERFUNCrIct 1
10 IF JJ-l THEN USERF-TNOW

RETURN
END

Figure 2. Example of the usage of the COMMON block.

The SAINT simulation program is made up of many subroutines and
functions. Most of these sub-programs are completely coded and are
used solely to accept, interpret and simulate a network. The
SAINT.FOR program also provides sub-programs which can be changed by
the user in order to reflect certain activities pertaining to a
particular network. Two examples of these adjustable sub-programs,
-,unction Userf and Subroutine Modrf, are discussed below.

3.3 Basic structure of networks

The basic element of a network is a task; a task represents a
particular function that is to be performed. All of the tasks in
Figure 1 are acceptable task symbols. Each task has a label and a
number. Task description codes are used to define the specifications
of a task and they are found on the left-hand side of the task symbol.
The task description code for the label of the task is 'LABL'. The
number of the task is found on the right-hand side of the task symbol.
There are three types of tasks available in the SAINT system; source
tasks, ordinary tasks and sink tasks. A task which starts at the
beginning of a simulation is a source task; it has no preceding task
at the beginning of a simulation. The BEGIN task in Figure 1 is an
example of a source task. An ordinary task is a task whose sole
purpose is to perform its function and to indicate by the branching
logic the possible succeeding tasks; an example of this is the REOOD
task in Figure 1. A sink task is a task whose completion could cause
the stopping of the simulation; the FINISH task in Figure 1 is an
example of a sink task.

3.4 Flow of the network

The flow of any network is determined by the branching logic of
each task. There are four types of branches available in the SAINT
system.

Deterministic branching) indicates that all branches emanating
from this task will be selected; that is, the probability of selecting
the emanating tasks is 1.0 for each task. The successive task that is
selected from a task with probabilistic branching (r) is determined
solely by probabality values that are placed on each branch. In this

Page 9

case, only one branch is selected and this branch is selected on
probability. There are two types of conditional branching that can be
specified. Each of the tasks emanating from these types of branching
(ge conditions placed on them. For the conditional-take first branch
(1), the first branch where the conditions are satisfied is selected.
For the other type, the conditional-take all branch ([]), all the
branches whose conditions are satisfied are selected.

3.5 Time

The SAINT.FOR program simulates a network in a time-dependent
manner. For each task, the amount of time required to perform its
function has to be specified. The task description code for task
duration is 'TIME'. There are basically three methods of specifying
the task duration. The first method is a simple method in which the
time required is a constant value; this value is represented as a
scaled constant (SC). The second method is where the task duration
can be selected from probability distributions which are provided by
the user in items called distribution sets (DSs). The values for the
DSs are derived externally to the program and are based on the
knowledge of the system activities. The SAINT simulation program
selects a value from this distribution and assigns this value to the
task duration. In this way the network has a better face validity as
the time to perform a particular task will not be constant. The third
method requires the use of user-functions (UF) and these will be
discussed later.

It is important to note that values from the DSs can be used in
any assignment statement. That is, assigning a value from a
probability distribution is not confined to the assignment of task
duration.

3.6 Information attributes

Information is passed through the network, that is, along the
various branches, by information packets which contain various
attributes. At the start of the simulation, information packets are
created for all source tasks. The task description code for ATtribute
ASsignment is 'ATAS' and this code followed by the information
attribute specification IA, indicates that an IA assignment is to be
performed. Assignment of these attributes can be made at any task in
the network.

As an example of the usefulness of IA, refer to the example
network in Figure 1. At the tasks 2, 3 and 4, assignment of two IAs
is performed.
At task 2 (NEW CONTACT messages),

IA 1 - value from distribution set (DS) 4 and
IA 2 - value from DS 5.

At task 3 (UPDATE/CLASSIFY messages),
IA 1 - value from DS 6 and
IA 2 - value from DS 7.

Similiarly for task 4 (UPDATE ONLY messages),

Page 10

IA 1 - value from DS 8 and
IA 2 - value from DS 9.

For clarification, IA 1 contains the value of recording time (RECT)

and IA 2 contains the value of the time taken to report to the officer
of the watch (REP-OOW). The purpose of this is so that, if, for
example, the RECORD task is to be performed, the value of RECT will be
obtained from the value of IA 1. In other words, the three different
types of messages, described as tasks 2,3 and 4, have different values
for RECT and REP-OOW and so, depending on the type of message being
generated (determined by tasks 2,3 or 4), the values of RECT and
REP-0OW will be selected. This is important because, as the example
network is simulated for a time limit set by the user, different types
of messages will be generated and the differing values of RECT and
REP-OW will be required.

3.7 Resources

Resources are defined as any non-consumable commodities that are
required for the performance of one or more tasks. A trivial example
of a resource would be the availability of an operator to process the
incoming messages. Further information on resources can be obtained
from the SAINT manuals which are listed at the end of this report. A
brief description of these manuals is found in Section 7. The
information on resources is found in Ref. 1.

3.8 System Attributes

System attributes (SAs) are pieces of information which do not
flow through the system, but are global in nature in the sense that
they are accessible to all tasks. There is only one set of SAs
associated with a SAINT model. Assignment to SAs can be made at any
task by once again using the task description code of 'ATAS'; here
this code is followed by an SA which indicates an SA assignment.

As an example of the usefulness of SAs, refer once again to the
example network in Figure 1.
At task 1, BEGIN,

SA 3 - value from user-function 1.
These user-functions (UFs) are discussed in section 3.10. Essentially,
SA 3 is assigned the value of the current elapsed time.
At task 99, CHECK,

SA 4 - value from UF 1 and
SA 5 - value from UF 2,

where UF 2 determines the difference between SA 3 and SA 4.

Essentially SA 5 will contain the time it took to travel along
one path or branch. This information is important for the network
depicted in Figure 1; it actually determines the task duration of the
CHECK task.

Page 11

3.9 Access to attributes

Access to attribute values, such as information or system
attributes, can only be made through user-written sub-program calls to
already-coded subroutines. User-written sub-programs, as indicated
before, are adjustable sub-programs available to the user for the
application of a particular network. As an example of accessing
attributes consider the following: the SUBROUTINE GETSA(1,VAWUE), a
predefined subroutine, will obtain the value of SA 1 and assign it to
the variable VALUE. A call to this pre-defined subroutine can be made
at any part of the program, but it is only accessible to the user
through user-written sub-programs. Two examples of user-written
sub-programs are discussed in the following two sections.

3.10 User-functions

User-functions (UFs) are examples of the user-written subprograms
available to the user. UFs enable us to write Fortran functions
(under FUNCTION USERF) for generating attribute assignment values. At
any task in the network, we can specify any attribute assignment (with
ATAS) using the function specification UF. Internally, this directs
SAINT to call function USERF with the UF number as an argument. The
required attribute values are computed in the function USERF. SAINT
automatically assigns these values to the attributes specified. In
this manner, attribute assignment values can be computed as a function
of any SAINT or user-defined variable. An example of the code for
function USERF is shown in Figure 3.

FUNCTION USERF(JJ) 00050920
CMt9CN /CC(06/ TNOW,TTNEX,NFAD,SEED,ISEED,NCRDR,NPRNT,NPUNCH,

* ?NI T,NRQNT,19NDC,DC,NDTN,NWTC

C CODE FOR USER-FLNCTION 1
10 USERF-TNWO

RETURN

END 00050960

Figure 3. Example of FUNCTION USERF.

Page 12

3.11 Moderator functions

Moderator functions are another example of the user-written
sub-programs facility which is available to the user; they provide a
method of changing the task duration by considering emy SAINT or
user-defined variable. The task description code for moderator
functions is 'MODRF'. The program code for these functions must be
written in Fortran under the SUBRUTINE MODRF(mfn,nnode).

Referring once again to the example network, this ability is
needed to determine the task duration of the CHECK task. Remembering
that the task duration of the CHECK task depends upon the time taken
to traverse one path and the rate of message generation, the necessary
code for this action is found in Figure 4. Also recall here that
messages may be placed on to a waiting queue and this is the reason
for using the CURLAG (current lag) variable in the subroutine in
Figure 4. CURLAG will be either equal to the lag-time of the
preceding message (i.e. the over time needed to deal completely with
the message) or it will be equal to zero. The variable TTIME is the
variable name of the task duration, and by assigning the determined
value to this variable the task duration time is modified. Note also
that the CHECK task also checks for the end of the simulation, i.e.
the time limit, and if current time is greater than the time limit
then the task duration of the CHECK task is zero; this is done to
handle the case where the time limit has been passed and the task
duration would be made equal to the difference of rate and traversal
time. The call to the subroutine UCLCT in this subroutine is
explained below.

All moderator functions are by default assumed to be deactivated;
to apply them to a task, they need to be activated for the duration of
that task only.

j ~m l im n ml M I l l l I l I I I l l l

Page 13

SUBROU!INE MORF(MFN,NNODE) 00031070
COMMON /COM22/ TTIME,PFIRB

Comm /CCw06/ ThtW,TIX,MFAD, SEED, ISEED,NCRDR,NPRNT,NRNCH,
* INIT,RIfNT,MNDC,NCMh, NNTC

C CODE FOR mIERATOR FUNCTION 4
C THIS MDERATM FUNCTION DETERMINES THE TASK PERFORMANCE TIME
C OF THE 'CHECK' TASK. THIS IS DEPRJDWT UPON THE TIME THAT IT
C TOOK TO TRAVERSE CNE BRANCH AND THE FREQUENCY TIME OF THE
C MESSAGES
10 CALL GETSA(2,FREQT)

CALL GETSA(5,BANCHT)
CALL GETSA(6,BRANLAST)
CALL GETSA(7,TASKNO)
ITASKD-INT (TASKNO)

CALL UCLCT(FREQT,17)

CURLAG-FRT-BRCHT+CURtLAG

IF (CURLAG.GT.0) THEN
TTIME-CURLAG
CALL UCLCT(TTIME,13)
CURIAG-0

ELSE
CALL UCLCT(-CUBLAG,14)
CALL UICLCT(BRANCHT,11)
CALL UCLCT(BRANcHT, ITASKN+ 3)
TTIME-0
IF (FRECT-BRANCHT.LT.0) THEN
CALL UCLCT(BRANCHT,15)

END IF
END IF

C CHECKING TO SEE WnHER EXAspED TIME IS GREATER THAN TIME LIMIT
CALL GETSA(1 ,TIMELIMIT)
IF (TDW.GT.TIMELIMIT) TTIME-0

RETURN 00031090

END 00031100

Figure 4 : Example of the SUBROUTINE WODRF, with the necessary code
for the CHECK task.

Page 14

3.12 Task statistics

The SAINT system allows us to define task statistics for any
task; SAINT obtains estimates of the mean, standard deviation, minimum
and maximum associated with the statistical quantity to be observed.
Two typical examples of task statistics would be the number of times
that a task was completed and the number of occurrences of the
releases of a task; note that a task may be released but may be unable
to start because of the unavailability of resources. A useful
statistic is the interval statistic. This statistic allows us to
determine the time taken between two specified tasks. For example, to
obtain the time between the release of task 1 to the completion of
task 5, we would mark the release of task 1 and collect an interval
statistic at the completion of task 5.

Therefore, task statistics provide the means for collecting
statistical values for the various occurrences and interactions
between tasks.

3.13 User-generated statistics based on observations

In a network, there can sometimes occur a situation where the
statistical values wanted can not be obtained by collecting task
statistics. For example, referring to the network in Figure 1, we
want to know the mean traversal time of the messages that cause the
succeeding messages to be put on to the waiting queue. The method of
doing this is by using the SUBROUTINE UCLCT(x,y); this subroutine
causes the value of x to be regarded as an observation of the
user-generated statistic based on observations (UBO - User generated
statistic Based on observations) number y. Note that all UDOs must be
defined at the beginning of the sinulation. So, each time a value is
put into this call, it is regarded as another observation. Thus the
mean, standard deviation, minimm, maximum and number of observations
can be calculated. once again, this system-defined subroutine can
only be accessed from a user-written subprogram. For the example
network this is done through moderator functions 4 and 5 which put
different values into different tBOs. To print and display the 1MO
values, the call, CALL SU0lTINE UCLCT(XX,O), mist be used. This
will cause all the UDOs to be displayed. Note that the zero value is
the important value in this call; the value of the real parameter XX
is not used.

_ _ _ _

Page 15

4 METHOD OF INUTING A NERK INTO SAINT

4.1 An overview of the input process

The SAINT input process works in the following way. All the
information pertaining to a network is broken up into a series of
input lines; each line is further subdivided into fields which are
separated by commas. The first field of these input lines identifies
the line and type of information that should follow. In the SAINT
simulation program there are subroutines and functions which pertain
to each possible input line; these subprograms interpret the entered
information accordingly. For example, as will be further explained
below, a data line with the first field equal to 'GE' will cause
SAINT to call subroutine GEN to interpret the values on this line. In
the SAINT manuals (specifically Ref. 2), these data lines are
referred to as cards and so in the following discussion the terms,
input lines and cards, will be used inter-changeably.

All the input lines pertaining to a network must be created under
the file 'FOR015.DAT'. The output is written to the file
'FOR016.DAT'. These two files are the only external files that need
to be considered.

4.2 General information cards

Before the task descriptions are put into the data input file,
several general information lines should be included at the top of the
data list. These lines provide information about the whole simulation
system. As with all the input data cards, each field of a particular
line has a particular meaning. As mentioned above, the first field
identifies the card.

The basic initial lines that all SAINT simulation networks
require include the c4 (general information), POP (program options)
and OUT (output options) cards. The GE card contains general
information and includes the date and number of iterations (runs)
required. The POP contains the program option details and includes
the number of information attributes, system attributes and moderator
functions being used in the simulation. Information about output
options, such as whether a detailed iteration output is wanted and the
iteration number for which the statistics task sumuary output should
begin and end is all included on the OUT card.

If a particular field on a card is omitted (which is indicated by
a comma or a blank and a comma or skipping to another field by
indicating the field nutmber in rounded bracxets) then the default
value for the field is assumed. Also, note that the termination of a
card of information is indicated by an asterisk. For example, if the
following card is entered

GE4,SABRI, ,, 1986, (10)999*

Page 16

these assumptions will be made

field 1 - GEN

field 2 - SABRINK
field 3 - default value
field 4 - default value
field 5 - 1986
fields 6,7,8 & 9 - default values
field 10 - 999
field 11 - default value.

The GEN card actually has 11 fields to be defined and even though
the card is terminated at field 10, field 11 is still assumed to have
a default value. The important question here is how it is known that
the GI card has 11 fields and what values are used as the default
values. All of this information can be obtained from the SAINT User's
Manual (Ref. 2). This manual has a list of all the possible input
cards (on pages 39-85, Ref. 2), with the meaning of each field and
its corresponding default value. This is necessary since all the
fields need to have an appropriate value, either by definition or by
default. For example, once again referring to the above GEN card, the
default value that will be used for field 3 of this GEN card will be
1, as can be seen on page 39 of the SAINT User's Manual.

Other general information cards can be included at the top of the
data input cards list, and these can include distribution set
definitions and initial values for system attributes.

At the end of the input data lines, a 'FIN' line muxst be included
to indicate that there are no more data lines to be read.

4.3 Inputting the task characteristics

Information pertaining to a particular task can be contained on
up to six lines. These lines (which are described on pages 59-71 of
the SAINT User's Manual) are all related to the same task by field 2
on each of the cards; this field contains the task number.

The first essential card is a TAS card which contains information
such as the type of task (i.e. source, ordinary or sink task) and the
task duration. The following cards pertaining to tasks are only
included if they will be used. The STA card is used if there are any
marking or statistics to be gathered at this task. Similiarly, an ATA
card is used only if attribute assignments are to be made. A MM card
is used if a moderator function is to be applied to this task. A
branching card is also only used if branching is to be performed; a
DLT card is used for deterministic branching, a PRO card for
probabilistic branching, a CFI card fo, conditional-take first
br3nching and a CAL card for conditional-take all. The definition of
each field of the cards is in the SAINT UseL's Manual.

As an example of a task, refer to the CrfECK task of Figure 1.
This ordinary task (i.e. not a source or sink task), called CHICK and
numbered 99 performs the following activities

Page 17

1. obtains the values of system attributes 4 and 5; where SA 4
is assigned the value of user-function (Ur) 1, and SA 5 is
assigned the value of Ur 2

2. keeps count of the nmber of times that this task is
released,

3. applies moderator function 5 in order to determine the values
of the user-generated statistics,

4. determines the task duration from moderator function 4, and

5. branches this task to task 100 if current elapsed time is
greater than the value specified in SA 1 (i.e. time limit)
or to task 1, otherwise.

The inpL. lines needed to describe this task would be as follows

TAS, 99, ClECK, 1,1*
ATA,99,REL,SA,,4,Ur,l,SA,,5,UF,2*
ST ,",, ,NUPREL*
MD,99,5,A,T,4,A,T
CFI,99,1,T A,1,,SA,,100,TGA,1,,SA*

4.4 The complete input needed for the example network

All the input needed for SAINT to simulate the example network is
listed in Appendix 2; this listing would actually be created under the
file 'F015.DAT'. Note that the meaning of each card can be found on
pages 39-71 of the SAIN User's Manual (Ref. 2). The associated code
for the user-written subprograms of SUBKXYTINE ORF and FLW OCN
USER? can be found in Appendix 3.

Page 18

5. RNING ThE SAINT SYSTM N THE VAX CaunnER AT ARL

In order to run the SAINT simulation program on the VAX-11/780
ciuter at ARL a colete copy of the simulation program SAINT.FOR is
required. This program is available to qualified requestors through
the USA1. (Note that Micro-Saint is available foc I4 PC's and
compatibles, but to date, the author has not used this package and
thus can not make any coment on its capabilities.)

After creating the input file of 'FM015.WKT', the procedure for
running it is like that for any Fortran program; that is, the
following sequence of commands is necessary

FM SAINT<cr>
LINK SAINT<cr>
N SAINT<cr> where <cr> - carriage return.

Because the SAINT simulation program is very long (approx. 7770
lines) the FM3 command, i.e. the compilation, takes a relatively long
time.

If the user-written sub-programs are to be utilized then the
following procedure is definitely preferable and less time-consming.
The code for the user-written sub-programs should be moved froa the
program SAINT.FQr and placed into another file the author has called
SAINTS .FM. Next, the command

PM SAINT<cr>

should be executed. This command will create the object file for
the SAINT program without the user-written subprograms. This comand
will not have to be used again. Next the file with the subprograms
should be copiled with the comand

FM SAINTSL<cr>.

Now, to connect the two files the following camand is necessary

LINK SAINT,SAINTSB<cr>.

Finally to run the no-comined program the comand

MM SAItlr<cr> can be used.

If the user-written subprograms do not work as intended, then
only the file Saintsub.for needs to be modified and compiled again
with the commnd

FM SAINT".

The LINK and MM cmvds are the same as above.

Page 19

This procedure greatly decreases the compilation time (i.e.
using the FM command) of the program since only the parts that are
changed, i.e. the user-written subprograms, are compiled again.

Page 20

6. OUTPUT

The output created on the file FOR016.DAT contains all the
information specified by the user as input. It partitions the input
into useful blocks of information and thus allows a useful check of
the input. It specifies the characteristics of the tasks, the initial
values of the system attributes, the initial status of the moderator
functions and groups together the tasks with the same branching type.
The tasks at which attribute assignments are made are also listed (see
Figure 5). In other words, the input is interpreted and displayed by
the SAINT system in the interest of allowing the user to recheck the
input.

A7MUBUTE ASSIGNENAT INFORMATION

TASK ASSIGNENT ASSIGNEW RESR ATRIB FUNCTICN PARAITTER
NUMIER POINT TYPE NUMER NFUMBER TYPE SPEC

1 REL SA 2 DS 10
SA 6 UF 2
SA 3 UF 1

2 REL IA 1 DS 4
IA 2 DS 5
SA 7 SC 2

3 REL IA 1 DS 6
IA 2 DS 7
SA 7 SC 3

4 REL IA 1 DS 8
IA 2 DS 9
SA 7 SC 4

99 REL SA 4 UF 1
SA 5 UF 2

Figure 5 Example of the output related to attribute assignment as
given in the output file, FPR016.DAT.

The output requested with the OUT card is displayed at the end of
the entered information. For example, a detailed iteration progress
can be displayed or a sumary of the task statistics and
user-generated statistics can be shown. 'igure 6 contains the
requested user-generated output obtained from the example network.

-Md

00

Nn N n N %n n
000 00a 0 0 00 0

* 4 0 + , + 4 + 4 C

.4 N N4 %a4 N % In
~~'Olt f% - CL I n .

.4'4 -0 - a 4 -4

00 00 0 0 00 0 0

'V 00a0 0 0 oj

IA00 0 0 0 0 0 00 0-
* re- 4 44

In 0n 0 0 aM 0 10.
Ni InU 0 0 0 0 O 0 0 4 0 0

NO 00 0 0 0 S . .5 0 I .4

000 0 WO OW W% 00e.0 0

a Ur
0U

w000000 a 0 0 0 000 0.4

In
2

w w ti 0 W 0 w a
m5? 4N 0 an '4 An V N4

a '4 A4 1 4 n N 4 '4 0 S
I1 a N S0 0 t- .

Inm

SM N N(4 N4 0N N N4 N4 NCS4
1-, 0 00o 0 0 0 a 0

04 4% 4 v 4 40 4 D 4

Z 10C 4 An -4 5 IN .4 4 .40 0 0 .4 -t 0 :. .

00 0 00CC 0 0 00 0

.* 4 4 4 + + + 4 + ft-
2 W W W SM wMS W SM W W 0

4 N Inm I n % 40 0.O N Vn SSM Nf. N OnN In 0% 4 W% N4 0
z 0% 0a 0 '4 N 400 0.4

0030 00 0 000 0 Uo

0I~ W SM SM 19 -j '
o I.* o S I W=

ci 0 W,

IL I 2.1 -9 I

Page 22

7. AVAILABLE MAZmLS

The first manual, 'Simulation using Saint: a user-orientated
instruction manual', (Ref. 1), provides good general information
about networks and SAINT. It explains all the features, such as task
duration and attributes, which are needed to code a network. It is
definitely the book to read in order to become familiar with networks
and the SAINT terminology.

The second manual, 'The Saint User's Manual' (Ref. 2) contains
all the information needed to input a network. It contains a
description of all the input cards, the meaning of each field and the
corresponding default values, Once the basic terminology of SAINT is
understood, these input cards are self-explanatory. Also found in
this manual is a list of error codes. These error codes report the
incorrect specifications of a network; these codes are found at the
bottom of the output file, FOR016.DAT, after the input information has
been interpreted and displayed by the SAINT system. When this type of
error does occur, there is no indication that the simulation has not
been completed; it is only when inpecting the output file that the
error code is detected.

The third manual, 'Documentation for the Saint simulation
program' (Ref. 3) relates mainly to the actual SAINT simulation
program code. It briefly explains each subprogram and gives the
meaning of each variable used in the program.

.. ..-ai _ ___

Pagt. 23

AUTIOR' S NOTE AND AC1IMLEDGMETS

The author is indebted to the staff of the Human Factors Group,
particularly Dr. J. Manton for his advice and assistance during the
course of this work.

Page 24

REFERENCES

1. Wortman David B., Duket Steven D., Seifert Deborah J.,
Hann Reuben L., Chubb Gerald P.,

'Simulation using Saint : A user-orientated instruction manual.'

Aerospace Medical Research Laboratory (AMRL).
Wright-Patterson Air Force Base, OHIO, USA.
Report Code : AMRL-TR-77-61, July 1978.

2. Wortman David B., Duket Steven D., Seifert Deborah J.,
Hann Reuben L., Chubb Gerald P.,

'The Saint User's Manual.'

Aerospace Medical Research Laboratory (.AIRL).
Wright-Patterson Air Force Base, OHIO, USA.
Report Code : AMRL-TR-77-62, July 1978.

3. Wortman David B., Duket Steven D., Seifert Deborah J.,
Hann Reuben L., Chubb Gerald P.,

'Documentation for the Saint simulation program.'

Aerospace Medical Research Laboratory (AMRL).
Wright-Patterson Air Force Base, OHIO, USA.
Report Code AMRL-TR-77-63, July 1978.

Mod.

Page 25

APPENDIX 1 : Modifications made to the initial SAINT simulation program.

(1) Change 1 - missing line.

2011 IF (KREAD(17).EO.0) GO TO 3000 00011820
WRITE(NFNqT,3580) 00011830
GO TO 2970 00011840

2021 IF (IREAD(18).Ei.0) GO TO 3000 00011850
WRITE(NPRNT,3610) 00011860
GO TO 2970 00011870

C ***** The next statement was missing - it was obvious what it was
C supposed to be : modified by Sabrina Sestito *****
2031 if (kread(19).eq.0) go to 3000

WRITE(NPNT,3600) 00011890
GO TO 2970 00011900

2041 IF(KREAD(20).EQ.0) GO TO 3000 00011910
WRITE(NPRNT,3290) 00011920

(2) Change 2 - random number generator function - VAX compatible.

END 00019960
FUNCTION DRAND(IYJ 00019970

C **

C This function was modified by Sabrina Sestito, to make this
C function compatible with the VAX VMS computer.
C **

DRAND-RAN(IY)

C * Below, is the original code for this function *******
C IF(IY) 5,6,6 00019990
C 5 IY-IY+2147483647+1 00020000
C 6 YFL-IY 00020010
C DRAND-YFL*.4656613E-9 00020020
C 00020030

RETURN 00020040
C 00020050

END 00020060
SUBROUTINE ENDIT(NITER) 00020070

l~m

Page 26

(3) Change 3 - making files 18 & 19 temporary.

IF (IFIN.EQ.0) GO TO 100 00001110

C ***

C This part was inputted by Sabrina Sestito - it's purpose is
C to delete the temporary files NRNIT(18) and NRENT(19)

CLOSE(NNITSTAUS-'DELETE')
CLOSE(NRD1T, STATUS-'DELETE')

C **

STOP 00001120
C 00001130

END 00001140
SUBROUTINE DFAUS 00001150

(4) Change 4 - changing the format statement.

5040 FORMAT(lHl,49X,33H*INITIAL SYSTEM ATTRIBUTE VALUES*,1X// 00008380
*55X,9HATTRIBUTE,5X,9HATTRIBUTE,IX/56X,6LBER,9x,5HVAIkJE,lX/) 00008390

C ************The following format statement was slightly******************
C *********changed from 'f8.3' to 'f10.3' - Sabrina Sestito***************
5050 FORMAT(l00(57X,14,8X,FI0.3/)) 00008400

C 00008410

Page 27

APPENDIX 2 :The input, under the file 'FVR015.DAT', needed for the
example network.

GlEl,SRMABB,2,6,l986,l,1*
POP, (4)2.7, 5*

ISA, 1, Sc,500*
UBO,vEN #~J,2 ,UPCLAS, 3 ,UP(RLY*
UnO, 5,NUEXHOE, 6,UPCLQJE, 7 ,UPCILQ3E*
1.30,11,TE,-QUBuE*
1.30,13 ,NCT-BUSY,14 ,L-TINE, l5,CAUSE-LAG*
unO, 17, FP.EM'VPUwE*
DIS,l,t4, ,2,27*
DIS,2,UNR, .3,87*
DIS,3,L*I, 2,20*
DIS,4A,UN, 10,32*
DIS, 5,CO, 5.25*
DIS,6,L14, 9,36*
DIS,7,CO,5.25*
DIS,,UN, ,5,42*
DIS,9,CO,5.25*
DIS,10,LH, .60,120*
TAS,1,BEGIN,0,1,SC,0 .. ,SO*
AT,1,REL,SA, ,2,DS,10,SA, ,6,UF,2,SA, ,3,UF,1*

PO .. 2, 0. 171, 3, 0.195, 4, 0.634*
mAS 2 ,NER-CcTACT, 1,1,Ds, 1*
ATA,2,REL,IA,,l,DS,4,IA, ,2,DS,5,SA, ,7,SC,2*
DBT,2,5*
TAS, 3 ,UPTE/CLASS,1,1 .06,2*
ATR,3,REL,IA, ,1,DS,6,IA, ,2,DS,7,SA, ,7,SC,3*
DET, 3,5*
TAS,4,UPnhTE-CNLY,1,1 ,JD,3*
ATR,4,I1EL,IA, ,1,DS,8,IA, ,2,DS,9,SA, ,7,SC,4*
DET, 4, 5*
TAS,5,RECErVE,1,1,Sc,0*

RO5..6,0.151,8,0.849*
TAS,6,N..RECOIW,1,1,SC,0*
PR,6 ...7,0.5,99,0.5*
TAS,7,REPOCW,1,1,SC,l*
MOID, 7,2,A, T*
DET,7,99*
TAS,S8,RECORD, 1,1, SC, 1"
I.W,8,1,A,T*
PRO,8 .. .9,0.5,99,0.5*
TAS, 9,REPOOf, 1, 1,SC, 1*
I'OD, 9,2 ,A,T*
DET,9,99*
TAS, 99, CHECK, 1,1,Sc, 1*
AT,99,REL,SA, ,4,UF,1,sA, ,5,UF,2*
STA,99, .. f. U,REL*
PD,99,5,A,T,4,A,T*
CFI,99,1,TIA,1, ,SA, ,100,TGA,1, SA*

PW,100,6,A,T*
FIN

Page 28

APPDIX 3 The code for the SUBUTINE D and FUNCTION USF
needed for the exaqple network.

SW-KXlMNE IM(DF(NvN,NNDE)
CONION /tCMG2/ TTrN, PFIRB

COINON /COM6/ TNOW,TDIU,MFAD, SEED, ISEED,NCR3,NPWr,w PNCH,
* IiNIT,NDIT,IDC,NDC,NT, NNTC

IF (MF4.0.4) GOTO 10
IF (MFN.VD.5) GOTO 20
IF (MFN.fQ.6) WOTO 30

C THIS MODPATR FUNICTION ASSIGNS THE TASK PERFMCE TIME
C TO THE VALUE OF THE INFOWATION ATTRIBUTE, #MFN.

CALL GETIA(MNM,VAUE)
TTIM-VALJUE

C CODE FOR MOERATOR FINCTION 4
C THIS MODERATOR F NCTION DETERMINES THE TAiSK PWRIANCE TIME
C OF THE 'CHECK' TASK. THIS IS DEPIDED UPON THE TIME THAT IT
C TOOK TO TRAVERSE CHE BRANC AND THE FREQUECY TIME OF THE
C MESSAGES
10 CALL GETSA(2,FrlF)

CALL GETSA(5, BBAICHr)
CALL GETSI(6, BRANLAST)
CALL GETSA(7,TASKNO)
ITAS INT (TASKNO)

CALL UCLCT(FRET, 17)

CULA-REI T-BRAN(CHT+CURLIG

IF (CURLAG.GT.0) THE1
TrIME-CURLAG
CALL UCLCT(TrIME,13)

ELE CURT.AG-0

CALL ECLCT(-CULA, 14)
CALL UI.LCT(BRANCHT,11)
CALL ULCT(BRANCHT, ITASKN0+3)
TrIME-0
IF (F3R T-BRANCHT.LT.0) 111N
CALL UCLCT(BRANHT,15)

END IF
END IF

C CHECKING TO SEE WHETHER ARE AT THE ED OF SIMULATION
CALL GETSA(1, TIMELIMIT)
IF (TNOG.GT.TIMELIMIT) TTIME-0

C CODE F ODERATOR FtUCTICN 5
C KEEPS A RECORD OF THE USER-GENERATED VALUES

ik

Page 29

20 CALL GI'S(5,TIU1MV)
CALL GETSA(7, ThSDW)
IF (ThSEN0.2) CALL UCLCT(TIM1UAV,l)

C: CALL UCLCI(X,-1) WILL PRINT OUT EACH INIVIDUJAL OBS,
C WITI? AN ACJW[ATE RECOD Or OBS.

IF (ThSDNO.80.3) CALL UCLCT(TINE7RAV,2)
IF (VMSM'.UQ.4) CALL UCLoCT(TIMETRAV,3)
IF ((TASKWN.I.2) .AW. (TAS.NE.3) .AE). (ThSN.NE.4)) then

PRM ,' TASID IS INCORECT ',ThS3
ED IF

25 RETURNi

C COEFOR MMR FUNCTIONI 6
C PRIMS OUT ALL THEK USER-GDIERATWD STATISTICS
30 CALL UCLCT(X,0)

FNCTION USERF(J3)
cooom4 /cfaO6/ TNOf, TTNM, MFAD, SEED, ISEED, NCRDR, NPRNT NPUNCH,

* mIIID1T~l,MNC,EDC,NDTI4,N1'C

C LSR-1.*
0O To (10,20), J1

C COE FOR USEfRIUCTICO4 1
10 USER-Ymw

C COE Ft% USER FUCTION 2
20 CALL GETSA(3,vALuE3)

CALL GETSK(4,VALUE4)
USERF-VALUE4-VALUE3

REUR

.mEND

Dur313uIIDN

Deeartment of Defence

Defence Central
Chief Defence Scientist
Deputy Chief Defence Scientist (Shared Copy)
Superintendent, Science and Program Administration (Shared Copy)
Controller, External Relations, Projects and

Analytical Studies (Shared Copy)
Director, Departmental Publications
Counsellor, Defence Science (London) (Doc Data Sheet Only)
Counsellor, Defence Science (Washington) (Doc Data Sheet Only)
S.A. to Thailand MRD (Doc Data Sheet Only)
S.A. to the DRC (Kuala Lumper) Doc Data Sheet Only)
OIC TRS, Defence Central Library
Document Exchange Centre, DISB (18 copies)
Joint Intelligence Organisation
Librarian H Block, Victoria Barracks, Melbourne
Director General - Army Development (NSO) (4 copies)
Defence Industry and Materiel Policy, FAS

Aeronautical Research Laboratories
Director
Library
Authors: S. Sestito
P.F. Preston
D.H. Spivakovsky
J.G. Manton
B.A. Clark
A. Ong
R.L. Nathan

Materials Research I4boratories
Director/Library

Defence Research Centre
Library

RAN Research Laboratory
Library

Navy Office
Navy Scientific Adviser
Aircraft Maintenance and Flight Trials Unit
RAN Technical School, Library
Director of Naval Aircraft Engineering
Director of Naval Air Warfare
Superintendent, Aircraft Maintenance ond Repair
Director of Naval Ship Design
Director of Operational Analysis - Navy

OIC RANTAU
Director of Tactics. Action, Information. Organization and Navigation
Director of Psychology - Navy
OC HKAS Platypus

Army Office
Scientific Adviser - Army (Doc Data sheet only)
Engineering Development Establishment, Library
US Army Research, Development and Standardisation Croup
Director of Operational Analysis - Army
Director of Psychology - Army

Air Force Office
Air Force Scientific Adviser (Doc Data sheet only)
Director of Operational Analysis - Air Force
Director of Psychology - Air Force

Central Studies Establishment
Information Centre

Department of Aviation
Library
Flight Standards Division

Statutory and State Authorities and Industry
Aerospace Technologies Australia, Manager/Library

Univeraities and Colleges
Adelaide

Bsrr Smith Library

Flinders
Library

La Trobe
Library

"-O~ Melbourne
Library

Monash
Hargrave Library

Newcastle
Department of Electrical and Computer Engineering

New England
Library

Sydney

Engineering Library

NSW
Physical Sciences Lirary
Library, Autmalia Defence Force Academy

LI.brary

Tasmana
Eniering Librry

Western Australia
Library

RMIT

Library

UND SWATW OF ANCA

Armstron Aerospace Medical Research Laboratory
Defence and Civil Institute of Environmental Medicine

SPARES (10 copies)
TOTAL (89 copies)

DOCUMENT CONTROL DATA 0~NO

AR-004-654 ARL-SYS-TM -93 7 SEPTEMBER 1967 DST 85/037

A WORKED) EXAMPLE OF AN PLS4RM UIM"1O
APPUCA72)N OF THE SAIT a. 29

S. SE87rO NOT APPLICABLE

- -- -u o - -r -

Approved for public release

11 MWnin LWCTTIN *inJ Is limo SO MMEn mmii.W SMI
UP~w OF .00010L GL rt at a

Ift VAN Idessf MY 0 Ml 10 CTA1Mn 40 in avan.. A Rf

No limitations

Us MO P01 ~ POSN W . inmn WO ME VA IN [: (JMM 0 [: lM

SAINT (Systems Analysis of Integrated Networks of Tasks)*
SAINTprogramming lauAge Computerized Simulation,.
Netwk modelling. Man Z"cin syste ms, 00623
S)msvtor Performance-~ 0095D
Human Factor14iAring.

bSAINT is a network modelling and simulation technique developed to assist in
the design and analysis of complex human-machine systems. This document
discusses some of the SAINT concepts, the develo,.-ment of a SAINT network.
the method of inputting the network into the SAINT environment, and

peets a brief look at the output from SAINT.

UNCLASSIFIED

THIS PAI IS TO BE UNED TO AECORO IFORWATION WHICH IS REWIRED BY THE ESTABLISHENT FOR
ITS OW UE BUT W104 WILL NOT BE ADED TO THE DISTIS OATA UNLESS SPECIFICALLY RESUESTED.

II. 1Wml T1V.

AERONAUTICAL RESEARCH LABORATORIES. MELBOURNE

A. lUT a. T - U. 1"m w ImI No

SYSTEMS TECHNICAL 734676
MEMORANDUM 93

ft. m ommi

SAINT

a. rnmew t a1, W. m

U. om'm. IawTm on -

DAT,

,a.-Ap -

